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Correspondence

Higher Order Modes in
Coupled Helices*

The problem of electromagnetic wave
propagation in a system consisting of the
two infinitely long concentric sheath helices
in free space, shown in Fig. 1, may be ap-
proached as a boundary value problem. This
has been done before for the case of the
lowest mode,! but the determinantal equa-
tion which gives the propagation constants
of the higher order modes has not been
given before. This note describes the ana-
lysis which gives the propagation constants
for all modes of propagation.

The expressions for the field components
may be written in terms of the cylindrical
wave functions.?

Region 1, (#<r):
EO = [’f_ L/ (er)aa®
T
~£2 Lnbh® | Fa (1a)
T -
EW = [_—l‘_ﬂ_ In(rr)an®
7%
.. 1,,'(Tr)bn<l>:| Fu (1b)
;
E® = [~ L@EHa.W]F, (1c)

Hwe
H W = — I.(77)a,®
%

+ 2 1,.'(1r)b,.<1>] Fu (1d)
-

iwe
Hy® = [.._ L (1) @™
T

_ I”(Tr)b,,(l)] Fn (le)
(&

H® = [~ LGrbM]F,. 1
Region 2, (n<r<re):

E® = [iﬁ L) an®
T

— % La(or)u® + B K ar)en®
T

- "‘“: K,.(-rr)d,;")] Fa (22)

T
Ee® = I:— 8
7%

— 2 L) ba® — —‘1 Kn(r£)ca®
.

In(71)a.®

_ e Kn'w)d,.w] Fa (2b)
-

E® = [= L6, — K.(m)en®]Fn (20)

Recelved by the PGMTT, July 30, 1959.

17, 8. Cook, R. Kompfner. and C. F, Quate,
“Coupled helices,” Bell Sys. Tech. J., vol. 35, pp. 127~
178; January, 1956,

H A, Straton, “Electromagnetic Theory,” Mec-
g}grﬁ:v-Hlll Book Co., Inc., New York, N, Y., p, 360;

H,® = [% ]n(ﬁ)an(z)
%
+ 2 1 enba® 4 T e
T ™%
+% K,.’(Tr)d,,(")] Fa d)
T
Hy® = [ﬂ 1/ (r7) aa®
T
nB fwe __,
— — L), ® + — K, (1), @
T T

_ K,,(-rr)d,.(”] 7. (2€)
T

H® = [~ L{(r)b,® — K.(r)d®P]F.. (2

Region 3, (r>r2):
b0 [ kmo
T
- ken K,.(q-r)b,.(3):| Fo (%)
r2r

£ = [ 22 Kyfman®
%

- ’—"— Ko ()b <s>] F. (3b)
E® = [— Ku(w)aa®]F, (3¢)
0,0 = ’_’“’_e Ko(r#)an®
T

+% K,,'(Tr)b,,<3>] Fo (3)
-

Twe
Hy® = [—— Kot (r)0a®
T

8 ,.(Tr)b,,m] Fo  (3e)
;
H® = [— K.(e/)b,®]F, (36)
where
Fo = exp [in6 + 8z — fwt), (4)
and
= VTR

Now in general we should sum over-all
values of # and 8 in (1), (2) and (3); how-
ever, since the boundary conditions for
sheath helices are the same for all 8 and z,
the orthogonality in # and z allows the
boundary conditions to be satisfied for each
# and 8.

We now apply the boundary conditions
that E|| (the component of E parallel to the
direction of conduction) be zero at all bound-
aries and that E, (the component of E
perpendicular to the direction of conduc-
tion) and H| be continuous across all
boundaries. These conditions lead to the fol-
lowing results:

119
At r=n:
E,® + Ey® cotyy = 0 (5a)
By — By = 0 (5b)
E,® — E,® = ( (5¢)

(10 ~ 0]
+ [Ho® — Hy®»] cot gy = 0, (5d)

and likewise at r=r;:

E3 4 Fg® cot ¢y = 0 (6a)
Eg® — FEg@® =0 (6b)
E® — E® =0 (6¢)

[H® — H,W]
+ [Ho® — Hy®] cot o = 0. (64)

We may now substitute (1), (2), and (3) into
(5) and (6) obtaining eight simultaneous
equations. These equations may be written

Fig. i—Concentric sheath helices showing definitions
of coordinates and dimensions. The arrows on the
sheaths show the direction of conduction,
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Pig. 3—Natural modes of propagation for # =0,
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Fig. 3—Natural modes of propagation for # =<1,
The curves for n=—1 are obtained by reversing
the signs of the abscissa.
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in a more compact form by defining the fol-
lowing notation:
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Writing the equation with this notation and
removing the common factor, F,, we have:
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In order to find the permissible values of
7 we must set the system determinant equal
to zero. The expansion of the eighth order
determinant is carried out elsewhere.® In or-
der to write the determinantal equationina
compact form we define
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The general determinantal equation is then
found to be
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The values of 7 which satisfy (8) give the
propagation constants of the various modes
of propagation. Setting #=0 in (8) we ob-
tain the previously known expression for the
lowest mode.! This mode is commonly used
in the analysis of helical couplers for travel-
ing-wave tubes. Letting 72 approach infinity
we obtain the equation for the modes on a
single helix.* These special cases indicate the
correctness of (8).

The solutions of (8) were found by an
approximate method using a digital com-
puter.® The modes of propagation for #=0,
+1 are shown in Fig. 2 and Fig. 3. The
curves for n=0 were calculated from pub-
lished data,! while Fig. 3 is the result of the
computer solution. Similar curves may be
found for any value of #. The knowledge of
these higher order modes should make it
possible to obtain more accurate solutions
to the coupled helix problem.

R. E. Haves
Electronics Res. Lab.
University of Kansas

Lawrence, Kan.
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Mass. Inst. Tech., Cambridge, Mass., Tech. Rep. No.
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The Tetrahedral Junction as a
Waveguide Switch*

A junction of two rectangular wave-
guides which are mutually cross-polarized
becomes a magnetically controlled reactive
switch when properly loaded by a ferrite rod
magunetized longitudinally (see Fig. 1). Itisa
special case of a novel type of structure for
which we propose the name fetrakedral junc-
tion. As a switch, it possesses:

1) very high insertion loss in the reflect-
ing state, ~60 db;

2) loss in the transmitting state which
is lower in principle than that attain-
able in any similar ferrite-waveguide
device, <0.1 db;

3) high switching speed—1 psec is at-
tainable with conventional circuits
and convenient currents;

4) large bandwidth, ~10 per cent;

5) little sensitivity to variations in ap-
plied field and saturation magnetiza-
tion; and

6) small phase and small phase-varia-
tions with frequency and applied field
in the transmitting state,

* Received by the PGMTT, August 2, 1959,
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Fig. 1—The tetrahedral junction.

Our experimental and theoretical results in-
dicate that there is room for further im-
provement in most of its significant prop-
erties.

In addition to its utility as a switch, the
tetrahedral junction can also be used as a
reversible gyrator. Further, its principle of
operation is such that a dissipative element
can be incorporated which converts the de-
vice into a matched modulator or reversible
isolator.

The name tetrahedral derives from the
fact that if the ends of the two crossed guides
are separated and their parallel edges joined
by planes, the resulting taper is in the form
of a doubly-truncated tetrahedron. Some of
our models are of this form, in particular,
the one whose properties are reported above.

Our interest in this device is an out-
growth of our study of the Reggia-Spencer
phase shifter;1:23 it is one of the “novel
effects” to which allusion is made by Weiss.?
As in the case of the phase shifter, the be-
havior of the tetrahedral junction may be
divided into two regimes: above a sharply
defined frequency the device takes on the
properties of a Faraday rotator; in a fre-
quency range just below that of the Faraday
effect regime, the junction exhibits its most
interesting and useful characteristics. Here,
however, it is inappropriate to speak of the
phase shift regime, for the phase shift effects
which are central to the Reggia-Spencer de-
vice are inessential, in fact undesirable, in
this case. On the other hand, the modes of
propagation?® are of the same basic form in
the two. In the presence of the magnetized
ferrite, a wave entering the junction of Fig.
1 from the input end takes on a character-
istic elliptic polarization. At the plane of the
joint it is scattered into four significant
components: a reflected and a transmitted
propagating mode, and an evanescent mode
in each guide which is also elliptically
polarized. A model of this phenomenon, em-
ploying simplifying assumptions similar to
those used by Weiss,? shows that under the
proper conditions (involving the cross-sec-
tional dimensions of the two guides, and the
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2J. A, Weigs, “The Reggia-Spencer microwave
phase shifter,” J. A ppl. Phys., vol. 30, pp. 153s-154s;
April, 1959. Proc, AIEE Conf. on Magnetism and
M agnelic Materials, Philadelphia, Pa., November,
1958.

3 J. A, Weiss, “A phenomenological theory of the
Reggia-Spencer phase shifter,” Proc, IRE, vol. 47,
pp. 1130-1137; June, 1959.



