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correspondence ——

Higher order Modes in

Coupled Helices*

The problem of electromagnetic wave
propagation in a system consisting of the

two infinitely long concentric sheath helices
in free space, shown in Fig. 1, may be ap-

proached as a boundary value problem. This
has been done before for the case of the
lowest mode,l but the determinantal equa-

tion which gives the propagation constants
of the higher order modes has not been
given before. This note describes the ana-
lysis which gives the propagation constants
for all modes of propagation.

The expressions for the field components
may be written in terms of the cylindrical

wave functions. 2

Region 1, (r <YI):

E(’) == [- L(*f’)d’)]F. (It)
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Now in general we should sum over-all

values of n and B in (l), (2) and (3); how-
ever, since the boundary conditions for
sheath helices are the same for all 0 and z,

the orthogonality in o and z allows the
boundary conditions to be satisfied for each
w and O.

We now apply the boundary conditions

that EII (the component of E parallel to the
direction’of conduction) be zer~ at all bound-
aries and that EL (the component of E
perpendicular to the direction of conduc-
tion) and HII be continuous across all

boundaries. These conditions lead to the fol-

lowing results:

E.(Q -f- 4500) cot J/l =, o (5a)

E@(l) _ E@(z)m, O (5b)

E,(1) – E,(2)=, 0 (SC)

[H*(I) - H,(z)]

+ [I@) – H@ cot@, = O, (5d)

and likewise at r = rs:

E=(’) + I@ cot ~j =, O (6ti)

E@ - &(3) s, ~ (6b)

E,(2) _ &(3) =, () (6c)

[H*(2) – H*(3)]

+ ~H.& – HO(3)] cot ~, = 0. (6d)

We may now substitute (1), (2;1, and (3) into
(5) and (6) obtaining eight simultaneous

equations. These equations mi>y be written

/

Fig. I—Concentric sheath helices showing definitions
of coordinates and dimensions. The arrows on the
sheaths show the direction of conduction.

Fig. 2—Natural modes of propagation for %=0.
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Fig. 3—NaturaI modes of propagation for n = +1.
The curves for ?z= ~ 1 are obtained b Y reversing
the signs of the absc~ssa,
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in a more compact form by defining the fol-

lowing notation:

Az=~1A2=* B==
7’?’2 T

C = ‘Q Inl = I.(r?I) Kn2 = Kn(m), etc.
7

Writing the equation with this notation and
removing the common factor, Fs, we have:

Jml(l + Al cot IA)G(lI

+ c cot rl~.l’bnf’) = O (7a)

A Jn@.(l) + cI.l’bn(l) - A 11n1an(2) – cZ~l’b~(2)

– AIKn,cn@) – cK.1’dnt2) = O (7b)

Imlan<l) – Inlam(’) – Knlcn(z) = O (7C)

B cot #Jml’afi(lj – lnl(l + Al cot #Jb.(l)

— B cot $11.,’%(’) + 1.1(1 + -41 cot J@.(z)

– B cot XIKml’Cn(2)

+ Kn,(l + AI cot $,)dn(’) = O (7d)

K.,(I + A, cot +Jan(’) + c cot @&’fI~(8) (7e)

A2Zn2a.(2) + cI.2’b~@) + A2K~2G,,(2)+ cK~~’d~@J

– ~2Kn2an@) – cK.l’b.(sJ = O (7f)

Zn*ar@) + K.2cc@) – Kn2am@)= O (7g)

B cot @2zJaz(2) – 1.2(1 + A2 cot @2)b.(2)

+ B cot ~2Kn2’Gn(2) – K.z(l + Az cot $Z)dn(z)

– B cot ~zKn2’an@

+ Kn,(l + A2 cot q%)bn(’) = 0. (7h)

In order to find the permissible values of
T we must set the system determinant equal

to zero. The expansion of the eighth order

determinant is carried out elsewhere.a In or-

der to write the determinantal equation in a

compact form we define

Pnl = I.lKnl, Pm’ = Inl’Knl’,

R. = ZnlKnz, R.’ = Inl’Kn2’,

P.2 = 1.2K.2, Pm=’ = lmz’Knz’,

% = ‘rrl, y = krl cot 41,

and

~ = ~ dcot2 +1%’ + y’ cot +1
.— .

*2 Icot +, I

The general determinantal equation is then
found to be

8 R. E. Hayes, “A Study of Coupled Helices.” M.S.
thesis, University of Kansas, Lawrence; May, 1959.

+—
cot $2

‘1 =$ Rm + y2/X2 ZR.)] = 0. (8)
r2 cot *I

The values of 7 which satisfy (8) give the
propagation constants of the various modes

of propagation. Setting a = O in (8) we ob-

tain the previously known expression for the
lowest mode.l This mode is commonly used

in the analysis of helical couplers for travel-

ing-wave tubes. Letting Y* approach infinity
we obtain the equation for the modes on a

single helix.1 These special cases indicate the

correctness of (8).
The solutions of (8) were found by an

approximate method using a digital com-
puter.$ The modes of propagation for n= O,
f 1 are shown in Fig. 2 and Fig. 3. The

curves for n = O were calculated from pub-
lished data,l while Fig. 3 is the result of the

computer solution. Similar curves may be
found for any value of n. The knowledge of

these Nigher order modes should make it

possible to obtain more accurate solutions
to the coupled helix problem.
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The Tetrahedral Junction as a

Waveguide Switch*

A junction of two rectangular wave-
guides which are mutually cross-polarized
becomes a magnetically controlled reactive
switch when properly loaded by a ferrite rod
magnetized longitudinally (see Fig. 1). It is a

special case of a novel type of structure for

which we propose the name .te.trahedral junc-
tion. As a switch, it possesses:

1) very high insertion loss in the reflect-
ing state, ~60 db;

2) loss in the transmitting state which
is lower in principle than that attain-
able in any similar ferrite-waveguide
device, <0.1 db;

3) high switching speed—1 psec is at-
tainable with conventional circuits

and convenient currents;
4) large bandwidth, N1O per cent;

.5) little sensitivity to variations in ap-
plied field and saturation magnetiza-

tion; and
6) small phase and small phase-varia-

tions with freauencv and aDD]ied field. .
in the transmitting-state.
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Fig. l—The tetrshedrrd junction.

Our experimental and theoretical results in-

dicate that there is room for further im-

provement in most of its significant prop-
erties.

In addition to its utility as a switch, the

tetrahedral junction can also be used as a

reversible gyrator. Further, its principle of
operation is such that a dissipative element

can be incorporated which converts the de-
vice into a matched modulator or reversible
isolator.

The name tetrahedral derives from the

fact that if the ends of the two crossed guides

are separated and their parallel edges joined

by planes, the resulting taper is in the form

of a doubly-truncated tetrahedron. Some of
our models are of this form, in particular,
the one whose properties are reported above.

Our interest in this device is an out-
growth of our study of the Reggia-Spencer

phase shifter ;1,2J it is one of the “novel

effects” to which allusion is made by Weiss.3
As in the case of the phase shifter, the be-

havior of the tetrahedral junction may be

divided into two regimes: above a sharply

defined frequency the device takes on the
properties of a Faraday rotator; in a fre-

quency range just below that of the Faraday

effect regime, the junction exhibits its most
interesting and useful characteristics. Here,
however, it is inappropriate to speak of the
phase shift regime, for the phase shift effects
which are central to the Reggia-Spencer de-
vice are inessential, in fact undesirable, in
this case. On the other hand, the modes of
propagation are of the same basic form in

the two. In the presence of the magnetized

ferrite, a wave entering the junction of Fig.

1 from the input end takes on a character-

istic elliptic polarization. At the plane of the

joint it is scattered into four significant
components: a reflected and a transmitted
propagating mode, and an evanescent mode
in each guide which is also elliptically
polarized. A model of this phenomenon, em-
ploying simplifying assumptions similar to
those used by Weiss,3 shows that under the
proper conditions (involving the cross-sec-
tional dimensions of the two guides, and the
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